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1. Introduction 
  

Deontic properties of actions, such as: “being obligatory”, “being permitted" or “being 
forbidden”, are components of norms, which are the interest’s subject of Law, Ethics, 
Information Technology, Telecommunication and many other fields. In the fifties of the last 
century, the newly-formed branch of modal logic, called deontic logic, provided formal tools 
to describe deontic properties, at the same time indicating relationships between them.  
It should be stressed that in the first systems of deontic logic – Old System (OS) [von Wright 
1951], systems K1 and K2 [Kalinowski, 1953] – the deontic properties have been treated as 
properties of actions, not “modalities”. This approach fits with the way in which the norms are 
being formulated, not only in natural language, but also in Law and Ethics, allowing to form 
such logical structures as “the action a is prohibited”, or “if the agent x is obliged to do a, then 
it is permitted to x to do a”2.  

It is well known that modern systems of deontic logic are in the large number not the 
logics of deontic properties but deontic modalities. Strictly speaking, they are the deontic 
logics of the states of affairs, sometimes understood as the outcome of actions. For instance, 
they are used to express that “a state of affairs p is permitted” or that “the agent ought to see 
to it that p” [Horty 2001]. This approach, although proved to be useful in some applications, 
for example in computer science – particularly in systems responsible for the security of 
information systems, whose security levels are described by the expression saying that a 
certain state of the system is permitted or forbidden – appears to be inadequate for modeling, 
legal and ethical issues, where a direct reference to actions and their deontic properties is 
required.  
                                                 
1 This paper in the large part is English translation of my paper: Setna - prosta teoria norm i działań, which 
appeared in the Polish journal Filozofia Nauki, nr 3-4 (63-64) in 2008. In the version presented here, I slightly 
modified the language of the theory and made important references to its extensions which have been made since 
2008. 
2 Formal systems in which deontic properties applied to actions got their second life starting from 1982: 

“Deontic Logic of Action [Segerberg, 1982], an article published by K. Segerberg in 1982 
was a milestone in the development of deontic logic since the 1950s when vonWright [von 
Wright, 1951] and Kalinowski [Kalinowski, 1953] had published their innovative deontic 
systems. In his article Segerberg proposed two systems: basic open deontic logic of urn 
model action (B.O.D.) and basic closed deontic logic of urn model action (B.C.D.). He also 
provided two models for both systems and proved the adequacy theorems. Segerberg’s 
work has become a source of inspiration for the deontic first order theories of Lokhorst 
[Lokhorst, 1996] and Trypuz [Trypuz, 2008], and deontic logics of action built in 
connection with Propositional Dynamic Logic (PDL). In the last class of systems, which are 
perhaps the most developed and explored deontic logics of action nowadays, we can 
distinguish (i) those in which deontic operators are defined in the Andersonian-Kangerian 
style by PDL operators and constant V (violation) [Meyer 1988, Dignum et al. 1996] and 
(ii) those which are built on PDL and in which (at least some) deontic operators are taken as 
primitive. The second approach may be further divided into the systems built on top of 
standard PDL [McCarty, 1983, Meyden, 1996] and the systems based on Boolean algebra 
of actions [Castro and Maibaum, 2009].” [Trypuz, Kulicki 2009] 



What's more, I claim that the deontic properties of actions directly depend on other, 
non-deontic properties of actions3. For example, if some agent is unable to carry out two 
actions simultaneously in certain situation, it is pointless to regulate those two actions as 
“obligatory” in this situation, because the agent won’t be “physically” able to satisfy such 
norms. So there is a need to return to the deontic logic of action, and expand it by relations 
between deontic and non-deontic properties of actions. 

This article attempts to meet this need. I would like to propose a simple theory of 
norm and action (in short, SETNA). It is a theory inspired by the first deontic logics. 
SETNA’s theses are all the basic laws of deontic logic in which internal operators do not 
appear in the scope of deontic operators. Moreover, a part of SETNA is also a theory of 
action, which describes the selected non-deontic properties of actions (e.g., physical or 
intellectual ability to perform an action by the agent or the (im)possibility of simultaneous 
execution of two or more actions in certain circumstances by the same agent) and formulates 
dependencies taking place between them and the deontic properties. 

The structure of the paper is the following. In section 2, the language, axioms, 
definitions, and some theses of SETNA are presented. Model of SETNA is the subject of 
section 3. The central place in the model takes the concept of “situation” being in essence a 
collection of actions satisfying certain conditions. These conditions are discussed in section 
3.1. In section 3.2, the soundness and completeness of SETNA with respect to the models 
presented in section 3.1 is proved. In section 4, an application of SETNA is shown. Finally in 
the conclusion some extensions of SETNA are described. 
 

2. SETNA – as a theory of FOL 
 
 SETNA is a formal theory modeling: (i) deontic properties of actions, (ii) abilities of 
the agent to carry out actions and the relationships between (i) and (ii). From the logical point 
of view, SETNA is a theory of first-order predicate calculus (in short: FOL) with identity4. 
The language of SETNA consists of  

 operators of propositional calculus (PC):    ,,,¬, (negation, conjunction, 
disjunction, implication and equivalence, respectively) 

 quantifiers: and  
 identity sign: = 
 variables representing actions: a, b, c, a1, …  
 constants naming actions: a, b, c, a1, … 
 terms: t1, t2, t3, … 
 two specific binary relations:  coexistence/co-occurrence of two actionsand S 

(parallel execution of two actions) 
 two unary deontic predicates: O (obligation to do) and F (forbiddance to do) 

 
SETNA has eight specific axioms that are introduced and discussed below. It is 

assumed that theses of SETNA relate to one and the same agent. Hence, there is no direct 
reference to the agents in the theory. Here are the axioms: 
 

                                                 
3 Formal non-deontic properties of actions have been studied by the author in [Troquard et al. 2006, Trypuz 
2007, Trypuz, Vieu 2007, Trypuz et al. 2007]. 
4 In fact quantifiers play no role in SETNA as it is presented in this paper and can be omitted. The only reason 
SETNA was built as a FO theory was it intended extension into normative syllogistic in a similar way as 
Kalinowski has shown in his K2 system (cf. [Kalinowski, 1953]). This extension still remains to be carried out.  



 A0. Axioms of PC and FOL with identity 
 

Coexistence is equivalence relation, i.e., it is reflexive (A1), symmetric (A2) and 
transitive (A3): 
 
 A1. aa    
 A2. abba   
 A3. cacbba   
 
Intuitively, we say that two actions co-occur (for one and the same agent) if the agent has a 
physical possibility and an intellectual ability to carry out each of them individually (in the 
same situation), but not necessarily can perform both actions simultaneously. 
 
“ S ” is a relation of parallel executability of two actions and is reflexive (A4) and symmetric 
(A5): 
 
 A4. aSa  
 A5. bSaaSb   
 
A6 states that if the actions a and b are simultaneously executable, then they co-occur: 
 
 A6. baaSb   
 
About the next two axioms can be said that each of them is a criterion of rational lawmaking. 
A7 states that if some action is obligatory, then it is not prohibited: 
 
 A7. ¬FaOa   
 
It does not allow that the same action in a system of norms, is at the same time obligatory and 
prohibited.  A8 says that if some two coexisting actions a and b are not simultaneously 
executable and a is obligatory, then b shall be prohibited: 
 
 A8.  FbOaba¬aSb   
 
In other words, it does not allow to a norm-giver to order to the agent to carry out 
simultaneously two actions when they are for him/her physically or intellectually  impossible 
to be done in parallel (see also T2 and T8 below). 
 

In addition, we introduce the following definitions. Df 1 defines the permitted action  
(“ P ”) as such, which is not prohibited: 

 
 Df 1. ¬Fa=Pa df  

  
Df  2 defines two actions as simultaneously non-executable (“ N ”) if and only if they can not 
be simultaneously carried out: 
 
 Df 2. ¬aSb=aNb df  

  
Action a is not regulated (“ E ”) if and only if it is neither obligatory nor prohibited: 



 
 Df 3. ¬Fa¬Oa=Ea df   

 
We will show in the next section, that action which is not (explicitly) regulated is in 

fact permitted, so it is not entirely without normative qualification. 
 
  

A few theses of SETNA:  

 T1. PaOa      Any obligatory action  is permitted. 
 

T2.  FbOabaaNb    If two coexisting actions are not executable in 
parallel and one of them is obligatory, then the 
other one is prohibited.  

 
 T3. FaPa      Each action is either permitted or forbidden. 
 
 T4. ¬FaPa      Each action is permitted iff it is not prohibited. 
 

T5. ¬aSbaNb   Two actions are simultaneously non-executable 
iff they cannot be carried out simultaneously. 

 
 T6. PaEa      Each action which is not regulated is permitted. 
 

T7.   FcObOabNcaNb    If a and b are non-executable and b and c are 
non-executable and (a is obligatory or b is 
obligatory), then c is prohibited. 

 
T8.   aSbObOaba   If two action which coexist are obligatory then 

are simultaneously executable. 
 

T9. ¬Fa¬OaEa   Action is not regulated iff it is neither obligatory 
nor prohibited. 

 
T10.    PbPaObOa    If a is obligatory or b is obligatory, then a is 

permitted or b is permitted. 
 

3. SETNA’s model 
 

 SETNA’s model is a structure: 

 = <,>, 

where is a structure which elements satisfy assumptions Z1-Z10, and are functions, 
which will be characterised as soon as  is described. 

 



3.1. Deontic structure 
 

 DozNak,Zak,Sim,D,=Δ  

is a structure satisfying the assumptions below. 

 D= {d , d1 , d 2 ,... , d n}  is a set of action tokens, which the agent may or is able to 
perform.5 We assume that D is not empty: 

 Z1. D  

Without committing to this condition, our model would allow for the existence of agent, who 
would not be able to perform any action, which obviously would lead to a conflict with 
known in philosophy (cf. [Bratman 1987, Davidson 1991, Searle 2001]) and in artificial 
intelligence (cf. [Franklin, Graesser 1996, Maes 1995, Russell, Norvig 1995, Wooldridge 
2000]) definition of an agent as having ability to affect the environment (in which resides) by 
its actions. 

A special place in the structure  occupies a set 

 Z2. D
k }s,ss{s,=S 2...2,1,  ,  

whose elements are certain subsets of a set of actions, possessing some special characteristics. 
Elements of a set S we would like to name situations, and about any action d belonging to a 
situation s we shall think that d is an action which the agent has a physical possibility and an 
intellectual ability to carry out in s. S is a subset of the power set of D which fulfils the 
conditions Z3-Z10 described below. 

  Any action from the set D occurs only in one situation: 

 Z3.   sdSss!Ddd   

Thus for any Dd  we always find such Ss , such that d occurs in s, and such s is the only 
one. For instance having a set of actions }d,{d=D 21 , Z3 excludes the following set of 

situations: }}d,{d},{{d=S 211 . From the assumptions Z1- Z3 it clearly follows that  

 W1. S  

Proof. Z1 ensures that there is at least one element of a set D and Z3 provides 
for each such element (exactly one) situation s, such that sd  , what proves 
W1. 

Moreover, for each situation there must be at least one action, which belongs to it:  

Z4.   sdDddSss   

It is easy to see that Z4 is equivalent to a statement that there is no empty situation (i.e. such a 
situation in which no action occurs): 

 W2. S  

Proof. W2 derives directly from Z4 stating non-emptiness of each element of a 
set S. 

                                                 
5 For the simplicity reason, we consider, as we did so in section 2, that in the model there is only one agent. 
Therefore, all principles shall apply to one and the same agent. 



What is worth attention is the fact that it is possible that SD , what has also interesting 
consequence: 

 W3.  D=sSssSD   

Proof.    Assume that SD . Because D includes all actions, therefore from 
Z3 we get that for each action a set D is the only situation to which all actions 
belong. Given the above and lemma W2, D is the only element of a set S. 

   Suppose that there is no such Ss , that Ds  . Then under Z2, W1 and 

W2, we get that SD , what finally proves W3. 

W3 concludes, therefore that SD  if and only if S is a singleton. 

We say that two actions d1 and d2 co-occur if and only if they belong to the same situation: 

 D1.    sdsdSss=d,dCoex df  2121  

It is easy to see that 

 W4. Coex is reflexive, symmetric and transitive.  

Proof. Reflexivity and symmetry of Coex are derived directly from the 
definition D1.  Its transitivity we prove as follows. Suppose that for any d1, d2 
and d3,  21 d,dCoex  and  32 d,dCoex . From the definition of D1 we have: 

 sdsdSss  21  and  sdsdSss  32 . Eliminating 

existential quantifiers, we get that 12111 sdsdSs  and 

23222 sdsdSs  . Then from the fact that 12 sd  i 22 sd  and from Z3 it 

follows that 21 s=s . And therefore 13111 sdsdSs  and finally 

 31 d,dCoex . 

Some of the actions falling into the same situation, have the property that are 
executable simultaneously by the agent (e.g. when the agent is an experienced driver, such 
actions are turn right and call by the phone), while others (e.g., turn right and turn left) such 
property do not have. Let “Sim(d1,d2)” be the relation understood as “action d1 is 
simultaneously executable with d2”. We say that two actions can be simultaneously 
executable only if both belong to the same situation: 

 Z5.     212121, d,dCoexd,dSimDdd   

It is worth noting that “Sim” is not equivalence relation, because it is not transitive. As 
a counterexample it is sufficient to take into account two pairs of actions simultaneously 
executable for some driver: turn right – call by the phone and call by the phone – turn left and 
notice that  the pair of actions turn right – turn left is no longer simultaneously executable.  

In addition: 

 Z6. Sim is reflexive and symmetric. 

Then, let 

 D2.  }dd,Sim:D{d=Simd 11   

be a set of these actions, which are simultaneously executable with d. Thus, a set  
 D3. Ad  = D\Simd  



is a collection of these actions (belonging possibly to the same situation as d or to some other 
situations), which are not simultaneously executable with d. Then we define the relation 
saying that two actions are simultaneously non-executable: 
 
 D4.   dAddd,Nonsim  11  

It is easy to prove that: 

 W5.     212121 d,d¬Simd,dNonsimDd,d   

Proof. Lets take any two actions Dd,d 21 . From D4 we know that the formula 

 21 d,dNonsim  is equivalent to 
12 dAd  , and then from D3, we get that it is 

also equivalent to 
1dSimDd \2  . The last expression is equivalent to 

Dd 2 and 
1dSimd 2 , which in turn is equivalent under the D2 to 

 21 d,d¬Sim  . This finishes the proof of W5. 
 

Then we introduce three subsets of D: Zak, Nak and Doz, which are the sets of actions 

being obligatory, prohibited and permitted, respectively.  Membership to these sets shall be 

restricted by the principles described below.    

If d is not prohibited, then it is also permitted: 

 Z7.  DozdZakdDd   

and if an action is prohibited, it is not permitted: 

 Z8.  DozdZakdDd   

From Z7 and Z8 it follows that  

W6.  DozdZakdDd   

 Proof. W6 is a direct consequence of  Z7 and Z8. 
 
One can see, therefore that any action from the set D can be proved to a member either a set 
Zak or a set Doz: 
 

 All possibile actions of the agent (D) 
 

 
 
 

Figure 1 

Prohibited Actions Permitted Actions 
 (Zak) (Doz) 

 
In addition, if d is obligatory, then it is not prohibited: 

Z9.  ZakdNakdDd   

As a consequence of Z9 and Z7 we get that a set of obligatory actions is a subset of a set of 
permitted ones: 
 W7.  DozdNakdDd   



Proof. Z9 guarantees that no obligatory action is prohibited, and Z7 ensures that 
any action which is not prohibited is allowed. From those two assumptions W7 
directly follows. 

 
If not all the actions from a set Doz are ordered, then W7 may be illustrated as follows: 
 
 

Permitted Actions (Doz) 
 
 

Obligatory 
Actions  

 
 

(Nak)  
 
 
 

Figure 2 
 
 
It is worth mentioning here that assumptions Z7-Z9 and their consequences are the set-
theoretical counterparts of widely accepted principles of deontic logic. In the form similar to 
presented in this paper they have been introduced for example by García Màynez (cf. 
[Kalinowski 1993, p.119-121]). 

Finally, it appears also appropriate to introduce the following rule concerning actions 
which cannot be simultaneously carried out. The rule says that if some action is obligatory, 
then all actions simultaneously non-executable with it but belonging to the same situation, 
should be prohibited: 
 
 Z10.     Zakdd,dCoexd,dNonsimNakdDd,d  22121121  

 
This principle describes the relationship between norms of obligation and prohibition and the 
fact that some actions cannot be both physically or intellectually performed by the agent in the 
same situation. 

Interesting consequence of this assumption says that if all the actions belonging to the 
same situation are obligatory, they all of them must be simultaneously executable: 
 
 W8.      d'd,Simsd'sdDd'd,NakdsdDdSs        

 Proof.  

 1. Ss      assumption 
 2.  NakdsdDd      assumption 

3.   d'd,Simsd'sdDd'd,¬    reductio 

4.  2121 d',d¬Simsd'sd     FOL, 3:E  

5. Nakdsd  11     2:E  

 6. Nakd 1      MP: 5,4 

 7.  21 d',d Coex     D1: 1,4 

 8.  21 d',dNonsim      W5: 4 

 9. Zakd' 2      MP: Z10,6,7,8 



10. Nakd'sd'  22    2:E  

11. Nakd' 2      MP: 4,10 

 12. Zakd' 2      MP: Z9,11 
 contradiction: 9, 12 
 

A special case of W8 is the formula W8’ saying, that if all the actions from a set D 
belong to one situation and are obligatory, then all of them must be also simultaneously 
executable: 
 W8'.   d'd,SimDd'd,SDNak=D   

 Proof. W8' follows directly from W8 and W3. 
 
In other words, W8' states that it is enough to find in D two actions simultaneously non-
executable to determine that either it is not the case that all actions in D are obligatory 
 NakD    or D is not a situation  SD . 

Two remaining elements of  to be described are functions ,.  
is an assignment function in   characterized as below: 
 If  a is a constant, a  D 

 ONak 
 FZak 
 SSim 
Coex 

is an interpretation function characterized as below: 
 if a is a variable, a  D 
 if a is a constant, aa

 if R {O, F, , S}, R =R




3.2. Soundness and completeness of SETNA 
 

Below we provide satisfaction conditions for formulae of SETNA. The satisfaction 
conditions for the quantifiers and the operators of PC are standard.  
 ╞ t1  t2 iff Coex(t1

, t2
), 

 ╞ t1 S t2 iff Sim(t1
, t2

), 
 ╞ Ft iff t  Zak,  
 ╞ Ot iff t  Nak, 
 
As the consequences of those conditions we get: 
 ╞ t1  t2 iff Nonsim(t1

, t2
), 

 ╞ Pt iff t  Doz, 
 
Theorem 1 (Soundness). All SETNA theses are true in the model 

if├, then╞ 
 
Proof. It is to be shown that all the axioms of the theory are valid and that truth is inherited by 
the rules of the theory. 
 
 The truth of the axioms A1-A3 derive directly from the satisfaction conditions and W4. 



 The truth of axioms A4 and A5 derives directly from the conditions of satisfaction and 
assumption Z6, i.e., from reflexivity and symmetry of Sim. 

  ╞ a S b  a b 
Lets assume that  ╞ a S b. This assumption is equivalent to Sim(a, b). From Z5 and 
our assumption we get that Coex(a, b), from which it follows that ╞ a  b. 

  ╞ Oa  Fa 
Lets assume that  ╞ Oa and  ╞ Fa. From this assumption we obtain that aNak and 
aZak. Then from Z9 we get that a Zak, what leads to contradiction. 

  ╞  FbOaba¬aSb   

Lets assume that ╞ a S b,  ╞ a b,  ╞ Oa and not  ╞ Fb. From those 
assumptions we get that Nonsim(a, b), Coex(a,b), a  Nak and b Zak. Under Z10 
from the fact that Nonsim(a, b), Coex(a,b) and a  Nak, it follows that b  Zak, 
what leads to contradiction. 

 
The proof finishes the remark that the rule of Modus Ponens leads from true formulae to true 
formulae.  

 
Theorem 2 (Completeness). All the true formulae of SETNA are its theses, i.e., 

(*) if╞ then├
 
Proof. Lets start from two terminological points. By ”╞ ” we shall understand that each 
model for the set of formulae is also a model for  but by ”├” that is derivable from 
the set of formulae  (and the theses of SETNA)Then in order to prove (*) it is enough to 
prove that 


(**) for any set of formulae  and any formula ,if ╞ then ├ 
 
and notice that (*) follows from (**) for =Φ 
 Then in order to prove (**), lets assume that ╞ and not ├From ╞  it 
follows that (i) there is no model for the set of formulae [cf. 4.4 Lemma, 
Ebbinghaus et al., 1994]but from the second assumption we get that (ii) is 
consistent (cf. Lemma 7.6 (a), [Ebbinghaus et al. 1994]). Consequences (i) and (ii) are in 
contradiction with the fact that 
  

(***) For each consistent set of formulae there is a model. 
 
Fact (***) we shall prove below. As shown in [Ebbinghaus et al. 1994] there is a “natural” 
way to do this. The sketch of the method we shall show below. 
 
 Let be a set of formulae of SETNA such that  
  a.  is consistent 
  b. for all formulae either or 
  c. for all formulae xthere is a term t such that (xt/x) 
 
 
 
 
 



Lemma 1 (Consistency). SETNA  is consistent. 
 
Proof.  
It is easy to prove the lemma by the method of interpretation. The variables of the system 
shall be interpreted as variables of PC and predicates S, , O and F, respectively as 
equivalence, equivalence, assertion and negation. Under this interpretation all the axioms of 
SETNA are theses of PC with quantifiers. 
 
Lemma 2.  
Any consistent set of formulas can be extended to a set which satisfies the conditions b and c. 
 
Proof.  
See the proofs of lemmas 2.1, 2.2 and 3.1 and 3.2 in [Ebbinghaus et al. 1994, p.81-86]. 
 
Lemma 3. 
Canonical structure = <D, Nak, Zak, Doz, Sim> - constructed from the formulae 
of the language of SETNA as below – is structure.  
 
Let t1 ~ t2 iff t1  t2  It is easy to see that ~ is equivalence relation. By |t|~we shall mean 

the equivalence class of set of terms by ~ to which t belongs. Then  ΦΦΔΦ ,,Δ= , is a 

model such that 
Φ is characterized in the same way as  

 ~
Φ

a=a  

 ~
Φ

a=a  

ΦΦ
Nak=O  

ΦΦ
Zak=F   

ΦΦ
Doz=P  

ΦΦ
Sim=S   

ΦΦ
Coex=  

 
 Dtt is a termis a quotient set of the set of terms by ~. Sometimes we shall 
refer to the elements of this set by d

dThen structure is built on the basis of the 
domainDas follows. First we define: ttifftt By t we shall mean the 
equivalence class of Dby  to which t belongs.SttDis a quotient set of 
Dby  We shall refer to the elements of Sby s

sThen we introduce the 
remaining sets from : 
 
 Nak =t: Ot 
 
 aktFt
 
 Doz =D\ ak





 Sim(tt) iff t S t2 
 
 Coex(d1

, d2
) =df  ΦΦΦΦΦΦΦ sdsdSss  21  

 
Proof. 
The proof of lemma 3 is easy but time consuming. In order to prove it, it is enough to show 
that structure  satisfies properties Z1 – Z10. We shall omit this proof. 
 
Lemma 4.  

(a) for any term t,
Φ

t |t|
(b) for any atomic formula, 

 ╞ iff

(Satisfaction conditions are defined in the similar way as before). 
 
Proof. 
Part (a) of the proof is obvious. Part (b) we prove by induction in the following way: 
 For (tt): 
  ╞ ttiff 

ΦΦ
t=t 

21 iff tt iff t1 ~ t2 iff  tt
 
 For t(in the similar way we prove for Ft): 

  ╞ t iff ΦΦ
Nakt  iff tNakiff t 

 
 For t1  t2: 

  ╞ t1  t2 iff  ΦΦΦ t,tCoex 
21  iff  ΦΦΦΦΦ ststSss

ΦΦ

 
21  iff 

 Φs (sS  ts  ts) iff  
 Φs (sS  st3  t1 t3    t2  t3 )iff t1 t2 
 
 For t1 S t2: 

  ╞ t1 S t2  iff  ΦΦΦ t,tSim 
21

iff  Sim(tt) iff  t S t2 
 
 
Henkin’s Theorem. 
Let be a set of formulae satisfying conditions a-c in lemma 1. Then for any 

(#) ╞ iff
 
Proof. 
We prove this theorem by induction, depending on the complexity of the formula If is an 
atomic formula, then (#)holds under lemma 4. For ¬ψ=  χψ=  and xψ=  the prove 
is standard (cf. Henkin’s Theorem in [Ebbinghaus et al. 1994]). 
 
 We have shown that for any consistent set of formulae there is a model, which is 
based on -structure, what entails by the lemmas and theorems proved above that SETNA is 
complete with respect to model . 
 



4. SETNA in action 
 
 In this section an application of SETNA will be presented. As it has been mentioned in 
the introduction, the SETNA’s theses can be used as a basis for the correct reasoning for 
instance in driving situations. Below we shall consider three questions, which certainly are 
familiar to those who were trying to get driving license in Poland in the recent years, because 
they are derived from driving theory test questions. Each of the questions consists of a photo 
illustrating a driving situation and a problem to be solved consisting of three of four norms 
which are to be recognized as being in force or not in the situation.  

 

Situation 1 (s1) 

Figure 3 

 
In situation s1 a driver: 
A – should turn right (at the crossroads) 
B – is permitted to turn right (at the crossroads) 
C – is not permitted to turn right (at the crossroads) 
D – is permitted to go straight 
 
 
In s1 a norm expressed by a sign B-21: forbiddance of turning left is in 
force.  
 

Let sp, sl, jp, be the names of actions such that sp = turn right, sl = turn left, jp = go straight.  

1. We establish which of those three actions can be performed simultaneously, and which cannot. In fact any 
two of them cannot be carried out in parallel,  what is expressed in the language of SETNA as follows: 

sp N sl, sp N jp, sl N jp 

2. We find the norms expressed by the traffic signs: 

Fsl (this norm is expressed by the sign B-21) 

and those actions which are not regulated:  

Esp, Ejp 

3. We check:  

 whether the sentences of the test are inferred from the assumptions made, the axioms and the rules of 
SETNA – in  this case we accept them as the correct answers 

 whether they attached to the assumptions lead to contradiction – in this case they are incorrect answers. 

We have therefore A-D options which expressed in the language of SETNA take the following forms: 

A – Osp 

B – Psp 

C – Psl 

D – Pjp 

The answer A leads to contradiction with assumption Esp and thesis T9, B  follows from assumption Esp and 
T6, C  follows from assumption Fsl and T4, and D can be inferred from Esp and T6. Thus the correct answers 
are: B, C and D. 

 
 
 



Situation 2 (s2) 

Rysunek 4 

 
In situation s2 a driver: 
A – is not permitted to turn right 
B – should turn right 
C – is permitted to turn left 
 
 
In situation s2 a norm expressed by the sign C-2: Obligation to turn right 
(after the sign) is in force. 
 

Let sp, sl be the names of actions such that sp = turn right, sl = turn left. We shall proceed now in 
accordance with the “algorithm” set out above: 

1. We establish which actions can be performed simultaneously, and which cannot: 

sp N sl 

2. We find the norms expressed by the traffic signs: 

Osp 

and those actions which are not regulated:  

there aren’t any 

It is worth noting that it cannot be said that action sl is not regulated, because from the obligation to carry out sl 
and the fact that it cannot be done simultaneously with sl, under T2 it follows that sl is prohibited. Thus by T2 
and the facts that sp N sl and Osp it follows that  

Fsl 

3. We shall express the sentences A-C into SETNA’s language, in the similar way as we have done in the 
earlier example: 

A – Psp (leads to contradiction with the assumption Osp and T1) 

B – Osp (follows from Osp) 

C – Psl (leads to contradiction with the assumptions Osp, sp N sl and theses T2, T4) 

Thus the correct answers is only B. 

 
 
 

Situation 3 (s3) 

Figure 5 

 
In situation s3 a driver: 
A – is not permitted to turn right or left 
B – should turn back 
C – should turn right or left 
 
In situation s3 a norm expressed by the sign C-8: Obligation to turn right 
or left is in force. 
 
 

Let sp, sl, z be the names of actions such that sp = turn right, sl = turn left, z = turn back 

1. We establish which operations can be performed simultaneously, and which cannot: 

sp N sl, sp N z, sl N z 



2. We find the norms expressed by the traffic signs and those actions which are not regulated:  

Osp  ∨Osl  

It cannot be said that action z is not regulated, because from the facts and norms: N z, sl N z, OslOsp by T7 it 

follows that  

Fz 

3. We shall express the sentences A-C into SETNA’s language, in the similar way as we have done in the 
earlier examples: 

A –  PslPsp¬    (leads to contradiction with the assumption OslOsp and T10) 

B – Oz (leads to contradiction with the assumptions sp N z, sl N z, OslOsp  , thesis T7 and axiom A7) 

C – OslOsp (follows from OslOsp ) 

Thus the correct answer is only C. 

 

 

5. Conclusion 
 

In this work a theory of norms and actions was presented, which due to its initial phase 
of development was named “simple”. Its particular feature is that it contains the laws 
describing the relations between the non-deontic properties of actions and their deontic 
properties.  Special attention deserves the principle establishing the relationship between 
simultaneous (non-)execution of two or more actions and the norms of obligation or 
prohibition (cf. A8, T2 and T8).  

It was also shown the applicability of SETNA in solving some questions concerning 
driving situations. Obviously this application does not exhaust a list of all the possible uses of 
this theory. SETNA can be successfully used as an aid in the creation of any systems of norms 
and as a tool for verifying the systems of norms already existing. A study of this issue, 
however, deserves a separate work. 

 Since 2008 when SETNA was published for the first time a few important extensions 
of it have been made. First of all the language of SETNA was changed from FOL to modal 
setting. All the properties of SETNA has been expressed into deontic action logic based on 
Boolean algebra. This framework allowed for introducing internal operators such as negation 
of action, indeterministic choice or parallel execution, essentially increasing expressing power 
of the basic theory. In [Trypuz, Kulicki 2009] a metalogical systematization in the area of 
deontic action logic based on Boolean algebra was provided, placing SETNA and its 
extensions among other systems. In particular it has been shown that the differences among 
the systems in question lie in two aspects: the level of closedness of a deontic action logic and 
the possibility of performing no action at all. In [Trypuz, Kulicki 2010] it was shown that the 
existing definitions of obligation in the systems of deontic action logic based on Boolean 
algebra are not acceptable due to their unintuitive interpretation or paradoxical consequences. 
As a solution it was proposed an axiomatic characterization of obligation with an adequate 
class of models. Finally in [Trypuz, Kulicki 2011] a formal system motivated by SETNA 
specific methodology of creating norms was presented. According to the methodology, a 
norm-giver before establishing a set of norms should create a picture of the agent by creating 
his repertoire of actions. Then, knowing what the agent can do in particular situations, the 



norm-giver regulates these actions by assigning deontic qualifications to each of them. In this 
extension the concept of situation has been essentially modified. In the “original” SETNA 
presented in this paper a situation is a set of actions, whereas in [Trypuz, Kulicki 2011] it is 
understood much like “possible world” in standard modal logic. 
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